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Inverse-Average-Type Finite Element Discretizations of 
Selfadjoint Second-Order Elliptic Problems 

By Peter A. Markowich and Milog A. Zalmal 

Abstract. This paper is concerned with the analysis of a class of "special purpose" 
piecewise linear finite element discretizations of selfadjoint second-order elliptic bound- 
ary value problems. The discretization differs from standard finite element methods 
by inverse-average-type approximations (along element sides) of the coefficient function 
a(x) in the operator - div(a(x) grad u). The derivation of the discretization is based on 
approximating the flux density J = a grad u by constants on each element. In many 
cases the flux density is well behaved (moderately varying) even if a(x) and u(x) are 
fast varying. 

Discretization methods of this type have been used successfully in semiconductor 
device simulation for many years; however, except in the one-dimensional case, the 
mathematical understanding of these methods was rather limited. 

We analyze the stiffness matrix and prove that-under a rather mild restriction on 
the mesh-it is a diagonally dominant Stieltjes matrix. Most importantly, we derive an 
estimate which asserts that the piecewise linear interpolant of the solution u is approxi- 
mated to order 1 by the finite element solution in the Hl-norm. The estimate depends 
only on the mesh width and on derivatives of the flux density and of a possibly occurring 
inhomogeneity. 

1. Introduction. We present and analyze a "special purpose" finite element 
discretization of two-dimensional scalar second-order elliptic boundary value prob- 
lems of the form 

(1.1) div(a(x)gradu) = f(x), X = (X1,X2) E Q C R2, 

(1.2) UlIQD = UDIjaQDa, V IaQN 2 0. 

The scalar function a is bounded away from zero and positive. f denotes an inho- 
mogeneity. Q is a bounded domain in R2 whose boundary splits into a Dirichlet 
part aQD and a Neumann part CQN. v denotes the exterior unit normal vector 
of i9Q. A homogeneous Neumann boundary condition is prescribed on (W2N and a 
possibly inhomogeneous Dirichlet condition on (9D. 

In many practical applications the coefficient function a and derivatives of the 
solution u (or even u itself) vary extremely rapidly in certain subdomains of Q 
while the flux density J, which is defined by 

(1.3) J := a grad u, 

is well behaved, i.e., moderately varying in Q (note that J const holds in the 
one-dimensional homogeneous case f _ 0!). For problems of this type it normally 
cannot be guaranteed that the variations of the quantities a and u are resolved 
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accurately by a computationally feasible mesh on which a discretization of (1.1) is 
performed. In this situation the solution u is not approximated well by functions 
which are piecewise polynomials on the given mesh. Thus, standard finite element 
or finite difference discretizations neither yield practically relevant error estimates 
nor give useful numerical results. 

These difficulties were encountered in the area of semiconductor device modeling 
in the sixties, since the electron and hole continuity equations of the Van Roosbroeck 
model (see Van Roosbroeck [14]) are (after an appropriate transformation) of the 
type described above (see Markowich [7], Selberherr [12]). Scharfetter and Gummel 
[11] published a discretization of the one-dimensional model equations, which is 
based on approximating the flux density J by a constant on each mesh interval. 
This method differs from standard finite difference schemes by an inverse-average- 
type approximation of the coefficient function a. 

Since then, various multidimensional finite difference, finite element and box- 
scheme analogues have been employed extensively and successfully in device simu- 
lations, even on rather coarse grids (see Selberherr [12] for a collection of references). 
However, except in the one-dimensional case, the mathematical understanding of 
these methods was extremely limited. Only recently, Mock [8], [9] published an 
analysis of Scharfetter-Gummel type box-schemes, which shows that ony the varia- 
tions of the flux density J and the inhomogeneity f have to be resolved accurately 
by the mesh in order to obtain reasonable discretization errors. 

Zlamal [18] derived finite element discretizations of the Van Roosbroeck semi- 
conductor device model in which he generalizes the approach of Scharfetter and 
Gummel to two and three space dimensions. The flux density J is approximated 
by a constant vector on each finite element (triangles or quadrilaterals in two di- 
mensions and tetrahedra or hexahedra in three dimensions with piecewise linear or, 
resp., piecewise bilinear basis and test functions using the isoparametric technique). 
Analogously to the one-dimensional case, the coefficient function a is approximated 
by inverse averages over edges of the finite elements. 

We remark that Babu~ka and Osborn [2], [3] derive finite element methods for 
elliptic problems with strongly varying coefficients which have a similar flavor (their 
methods also involve inverse averages of a coefficient function). They use different 
trial and test spaces to set up the method and their convergence proofs are based 
on variational approximation. In this paper we generalize Zlamal's approach to 
two-dimensional problems of the form (1.1), (1.2) and derive an inverse-average- 
approximation-type finite element discretization using piecewise linear test and ba- 
sis functions on a triangular mesh. We prove (under a rather mild assumption on 
the mesh) that the corresponding stiffness matrix has the same qualitative proper- 
ties as the stiffness matrix of Galerkin's method, i.e., it is a diagonally dominant 
Stieltjes matrix. 

The main thrust of the analysis is towards the convergence performance of the 
discretization. We prove (again, under a mild geometric assumption on the mesh) 
convergence of order 1 in the H'-norm and, most importantly, that the H'-norm 
of the difference of the finite element solution and the piecewise linear interpolant 



FINITE ELEMENT DISCRETIZATIONS OF SECOND-ORDER ELLIPTIC PROBLEMS 433 

of the exact solution is 

0 1 1i +h h 21fIIH2(n) 

where h denotes the maximal length of the sides of the triangles of the partition. 
Thus, under the assumptions made, the error is independent of derivatives of "fast" 
quantities, it only depends on derivatives of the flux density and of the inhomogene- 
ity f on the given mesh (the error term involving f stems from numerical integra- 
tion !). An analogous error estimate is obtained for the flux density. These results 
explain mathematically why inverse-average-type finite element discretizations of 
(1.1), (1.2) are appropriate in the sense that simulations on rather coarse meshes 
give reasonably accurate results if only the flux density and the inhomogeneity are 
well behaved. 

We remark that the methods employed for the proofs carry over to three- 
dimensional problems of the form (1.1), (1.2), only the required calculations are 
more involved. 

The paper is organized as follows. In Section 2 we state assumptions and in- 
troduce notations, in Section 3 we derive the finite element scheme, Section 4 is 
concerned with the properties of the stiffness matrix and Section 5 with the conver- 
gence analysis. The application to the semiconductor device equations is discussed 
in Section 6. 

2. Preliminaries. We shall employ the following assumptions on the boundary 
value problem (1.1), (1.2): 

(2.1) < a < a(x) < < oo, x E7; aEC(0C). 

(2.2) f EH 2(Q); UDE H1(Q), UDIQD E C(aQD). 
Q1 C R2 is a bounded domain with a polygonal boundary 6i - 

(2.3) aQD U aQN,WD fl aQN = 0. (90D is closed and aQN is open 

with respect to 80. AWD is the union of a finite number of line 

segments and the arclength of 8WD is positive. 

(2.4) The problem (1.1), (1.2) has a (unique) solution u E H1 (n) nC(Q) 

for which J = a grad u E Co 1 (U). 

In the case of a mixed Neumann-Dirichlet boundary value problem (9fN #0) 
(2.4) represents a condition on the angles at which AOD and aQ9N meet (see, e.g., 
Grisvard [5], Kawohl [6]). 

We cover ?I by a triangular mesh A = {T1,..., TN} which is such that all sides 
which have a nonempty intersection with f2D have an empty intersection with 
(902N. We denote by hT the maximal length of the three sides of the triangle T and 
define 

(2.5) h:= max hTv 
TEA 

We denote by M the number of vertices P E ? U aQ and by K the number of 
vertices P E Q!. XA shall denote the space of all functions OA, which are continuous 
in ?2 and linear on each of the finite elements Ti and XA,o the subspace of XA 
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consisting of all continues piecewise linear functions which vanish on aQD. By 
X E X, we denote the basis function, which assumes the value 1 at the vertex 

Pi and 0 at all other vertices. Obviously, dim XA = K and dim XA,0 = M. We 
denote by vI the piecewise linear interpolant of the function v E C(Q), i.e., 

(2.6) VI = E v(Pi)q% 

Most of the calculations performed in the sequel are done "elementwise". They 
are expedited by transforming the corresponding finite element T (in the (x1, x2)- 
plane) into the reference triangle T with the vertices (0, 0), (1, 0), (0, 1) (in the 
(i1, 42)-plane). A possible transformation reads: 

(2.7) x(() = P1M1(() + P2M2(() + P3M3((), 

where P1, P2, P3 are the coordinate vectors of the vertices of T and M1, M2, M3 are 
the shape functions 

(2.8) M1(() =1-1- 62, M2(.) = , M3() = 62. 

By (2.7), P1 is mapped into (0, 0), P2 into (1, 0) and P3 into (0, 1). 
We denote the Jacobian # by IT (and its transpose by IT). XGT denotes the 

center of gravity of the triangle T. We write x y for the scalar product of the 
two n-dimensional vectors x, y E Rn and IxI for the Euclidean norm of x. The 
corresponding matrix norm is denoted by the same symbol. The standard notation 
for Sobolev spaces and associated norms is employed (see, e.g., Adams [1]). Hm(Q) 
stands for the space of real (or vector-valued) functions, whose weak derivates of 
order up to m are in L2(Q), and 

( ~~ ~~~~~~2 1/2 

(2.9) 1V1H~m(Q) :=19i~2r Dxl +Cx2 LV~ 7) 

(2.9) (?~~~~~<_C91 +C92 <-M 1 lZ2 1 lL2 (Q)) 

2 12 

(2.10) IV lHm(n) := Ya ||aiaci x xa2 L2( 11 J 

HO1 (Q U aQN) denotes the subspace of H1 (Q) consisting of functions which vanish 
(in the weak sense) on aQ D. Note that I I-,1() is a norm on Ho'(Q UQN) because 
of (2.3). The weak formulation of the boundary value problem (1.1), (1.2) is given 
by: 

(2.11) (a) b(u,0)=-(f, 0)2,Q Ve HOj(QUaQN), 

(2. 11) (b) UlaQD = UDlaQD I 

where (., )2,Q denotes the L2(0)-scalar product and b the bilinear form on H1(0): 

(2.12) b(u,q0) := a(x)gradu grad0dx; u,0 eH1(). 

3. Derivation of the Finite Element Discretization. We shall derive the 
"fitted" finite element discretization of (1.1), (1.2) by generalizing the approach of 
Zlamal [17], [18]. The basic idea is to approximate the flux density J by a constant 
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vector on each finite element T. Therefore, let T E A be a triangle with vertices 
P1, P2, P3. We write 

J(X) J(XGT) + ET(X), x E T; 

(3.1) ET() = ja (GT + t(X - XGT)) dt(x - XGT), 

or equivalently, by using the definition (1.3) of J: 

(3.2) a(x) gradu(x) = J(XGT) + ET(X), x E T. 

Here "4 denotes the Jacobian of J. We transform the equation (3.2) to the reference 
triangle T by employing (2.7) and obtain 

(3.3) a(x(())(IT)-1 grad u(x(W)) = J(XGT) + ET(X(W)), ( E T 

Premultiplication of (3.3) by -IT gives 

(3.4) grd~ UWV = 1 1 
ETX 

(3.4) gradf u(x(()) = (x(;)ITJ(XGT) +a(x ITET( ))I 

We set 

(3 5) J := ( J ), ET = (E1,T bT (T 
CT 

J2 
ET:= 

E2,T ~ dT eT/ 

and integrate the 41-component of (3.4) with respect to 4, over the interval [0,1] 
and the 42-component with respect to 42 over [0,1]: 

(3.6) (U (P2) -U (Pl) AT(a)I'J(XGT) + 6T 
U u(P3) - U (Pl) 

where AT(a) is the diagonal matrix 

( 1 __ __ _ f1 d< 2 
(3 ) AT (a) := diag (| (x(l, 0)) a(x0 6) 

and 

bT [1T (X T(6 i 0)) d1 + dT 
, (X (6 i z40)) d1 

(3.8) 6T a a (x(|,,0 )) J a (xl ; 1 ~0)) 
ICfE1,T(X(0, 62)) f1 e E2,T(X (O, i )) 
CTJ a (x(O, 62)) LSWT] a(x(0, 62)) J 

We solve (3.6) for J(XGT) and obtain 

(3.9) (a) J(XGT) = (IT) 1A 1(a)IT grad ui - (IT) 1A 1(a)6T 

The crucial step in deriving the discretization scheme lies in neglecting that term 
on the right-hand side of (3.9) (a) which involves 6T* Obviously, (3.1) implies that 
neglecting 6T corresponds to approximating the flux density J by a constant vector 
on T. Intuitively, this is justified by the assumption that J is a "well-behaved" 
function (i.e., slowly varying in Q). 

We approximate J(x) on T by 

(3.9) (b) JT[uA] := (IT) 1AT1(a)IT graduA, 

where uA denotes a piecewise linear approximation to u with nodal values u1, U2, U3 

on P1, P2, and P3, respectively. This process of deriving an approximate element 
flux density is repeated by employing different reference element transformations. 
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X1X 

2~~~~~~~~6 

/P i 

2: ~~ 3 

X_~~~~~~~~ 

a PA ~~~~X = X(>) 

2 

x2 1~~~~~~~~~~~~ 

FIGURE 1 

Element transformations 

In addition to (2.7) we set up the transformation x = x(() such that P2 is mapped 
into (0,0) (and P1, P3 into (0,1) and (1,0), respectively). Also we map P3 into 
(0,0) (and P1, P2 into (1,0) and (0,1), respectively) (see Figure 1). Altogether, 
three different element transformations with associated Jacobians IT,1, IT,2, and 
IT,3, respectively determine three approximate element flux densities (obtained 
from (3.9)) by 

(3.10) JT,i[uA] := (ITj) jA(a)ITjgradu&, i = 1,2,3. 
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The diagonal matrices ATi (a) are given by 

(3.11) (a) A-1 (a) = diag(Al, A3), 

(3.11) (b) AT-2 (a) = diag(A2, Al), 

(3. 11) (c) A-"3(a) = diag(A3, A2), 

(3. 11) (d) Ai i a-' d 

Here, e1, e2, e3 denote the sides of T and 11,12,13 their lengths (see Figure 2). dl 
stands for the arclength differential. Thus, Ai is the inverse average of the function 
a over the side ei 

X2 / ' A~~~~~~~~~ 

x2~~~~~~~~~~~~~~~ 

e2~~~~~~ 

e3 

FIGURE 2 
Element notation 

Note that the vertex which is mapped into the origin of the (ii, 62)-plane com- 
pletely determines the approximate element flux density. Exchanging the images of 
the other two vertices corresponds to an exchange of the columns of IT and AT(a), 
which is annihilated by the similarity transformation (IT)-'A+'(a)IT' 

The derived approximate flux densities differ from standard discretizations by 
the special way of approximating the coefficient function a(x). The matrices 

(IT~i)-lA-(a)IT~i, which multiply graduA in (3.10), can be regarded as inverse- 
average-type approximations to diag(a(x), a(x)) on T. 

Let PI E ?2 be an arbitrary node. For all those triangles which have PI as vertex 
we choose the element transformation (2.7) such that PI is mapped into (0,0 ). We 
define the following functional on XA: 

(3.12) bl(uA)= a IT JT,i [uA] grad 0(l) dx, 
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where JT,I[uA] is given by (3.10) and q(j) is the basis function which corresponds 
to PI. By linearity we set up the bilinear form 

(3.13) bA(uA,OA) := E ibi(uA); uAqO EXA, 
PiEf 

where qi are the nodal values of OA, i.e., 

(3.14) An= W q~jq. 

PiEd! 

We shall regard bA as finite element approximation of the form b defined in (2.12). 
The approximation of the L2(Q)-scalar product can be done in one of the usual 
ways. We choose the following numerical quadrature rule, 

(3.15) I f(x) dx ; QT(f ) := - area(T)(fi + f2 + f3), 
JT 3 

which is exact if f is linear on T. We define the discrete scalar product 

(3.16) (f,9)2,Q,A = E QT(fg). 
TEA 

The finite element approximation of (2.11) then reads: 

(3.17) (a) bA(uA,qA) = -(fA)2,Q,A VqA EXA,o, 
(3.17) (b) UAtaQD = (UD)ItaQD 

We remark that the discretization (3.17) is a generalization of the scheme presented 
by Zlamal [17], [18], who dealt with the special case of the function a being the ex- 
ponential of a piecewise linear function OA. This application occurs in the modeling 
of semiconductor devices and will be discussed in Section 7. In fact, the analysis 
presented in this paper was motivated by the fundamental semiconductor device 
equations (see Markowich [7]). Note that the form bA reduces to the Galerkin 
approxmation bA (uA, OA) = fn grad uA grad OA dx of -Au for a -1. 

4. Analysis of the Bilinear Form bA. First, we rewrite bA as a sum over 
all triangles in A (instead of as a sum over the nodes). By observing that three 
integrals over each triangle occur in (3.13), we obtain by using (3.12): 

bA (uA, OA) = z (01j JT,1[UA] grad0(') dx 
TEA 

(4.1) + 02 JT,2[UA+ grad 0(2) dx 

+03 JT,3[UAI grad 0q) dx) 

As in the previous section, we use "local notation", i.e., the vertices and sides of 
T are denoted as in Figure 2; 01,02,53 are the corresponding nodal values and 

0(1), 0(2), (3) the corresponding basis functions. 
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P3 

FIGURE 3 

Triangle parameters 

It is easy to show (by using (3.10)) that the integrals IT JT,i [uA I grad (q) dx, 
i = 1, 2, 3, are invariant under translations and rotations of T. Thus, they can be 
expressed in terms of any set of three parameters, which determines the triangle 

T) e.g., in terms of the length 11 of e1, the height h1 and the segment length m1 
(see Figure 3). Then the integrals occurring in (4.1) are obtained by a simple but 
tedious calculation: 

IJT.1 [uA] grad ( dx 

(4.2) (a) - area(T) (11(11 -mj)A3(Ul -U3) 
(1lhl)2 11-m)3u 3 

+ (h2 _ 11m, + ml2)Al(ul -U2)) 

( JT,2[UA] . grad (2) dx 
(4.2) (b) area(T) 

= (1h)2 (l1mlA2(u2 - U3) + (h2 - 11Ml + m2)Al(u2 -U)), 

I JT,3[UA]j grad0(3)dx 
(42 c aT lmA - 

(4.2) (c) area(T) { _ \ 
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We insert (4.2) into (4.1) and obtain by an easy manipulation 

bA (uA, OA) = 
E lm-(Aj(h -11MJ + ml(ui - U2)(01 - 02) 

(4.3) + A211m(u2 - U3) (02 3) 

+ A311 (11 - Ml)(Ul - U30(1 - 03)). 

By inspection of (4.3) we conclude: 

LEMMA 4.1. bA is symmetric on XA. 

An even more convenient form of bA is derived by employing trigonometric ar- 
guments to express those terms in (4.3) which depend on the geometry of T only 
in terms of the interior angles of T. We obtain 

1 
bA(uA,qOA)= 2E (A1cot(a3)(u1 - u2)(q1 - 02) 

(44) ~ ~ ~ 2TEA 

+ A2 cot(a1)(u2 - U3)(02 - 03) 

+ A3 cot(a2)(u1 - u3)(;1 -03)) 

where ai denote the interior angles of the triangle T (see Figure 3). We call a 

triangular mesh A of acute type, if all interior angles a of all triangles T E A 

satisfy 0 < a < ir/2. We prove 

LEMMA 4.2. Let A be of acute type and assume that (2.1) holds. Then bA is 

bounded on XA and coercive on XA,O. In particular, 

(4 5) JbA (uA , 4,A ) I < djuA IH1 (Q) IOA IH1 (Q) VuA, OA E XA, 

(4.6) bA (OAOA) > a I A I H1 (Q) V1OA E XA . 

Proof. Since A is assumed to be of acute type, we have cot ai > 0. Thus, the 

Cauchy-Schwarz inequality (applied to (4.4)) gives 

tbA (uA, OA) < z max(A1, A2, A3) 
TEA 

(4.7) x [cot(Ce3)(U - U2)2 + cot(al) (u2 - U3) 

+ Cot (C2) (U - 3212 

x [cot(a3) (01 - 02)2 + Cot( ) (02-)03)2 

+ cot (a2) (01 -03 )2]1/ 

A simple computation gives 

Ijgrad u~j = - __ __ _ 

(4.8) 
v/2 (area(T)) 1/2 
X (cot(a3)(ul - U2)2 + cot(al)(u2 -U3 

+ cot(a2)(u1 - u3)2)1/2 on T 

and, since (2.1), (3.11) (d) imply 
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we derive 

(4.10) tbA (uA, OA) I < > J | grad uA grad 0 I dx. 
TEA 

Also, we obtain from (4.4), (4.8) that 

bN(OA, OA) ?E min(Al,A2,A3)J I gradA2 dx >a I gradOj2 dx, 

from which (4.6) follows. 0 

The existence and uniqueness of a finite element solution uA follows from Lemma 
4.2. 

THEOREM 4. 1. Let the assumption (2.1), (2.2), (2.3) hold and assume that the 
mesh A is of acute type. Then the finite element discretization (3.17) has a unique 
solution uA E XA. 

Proof. The estimate (4.6) implies the invertibility of the stiffness matrix. El 

The element stiffness matrices ST can be easily calculated from the expression 
(4.4). We have 

(4.11) (a) bA (uA, OA) =E (Ulp U2 2 U3)ST 02 
TEA 03 

where the element stiffness marix ST is given by 

(4.11) (b) 
I Al cot(a3) + A3 COt(2) A1 Cot(a3) A3 COt(a2) 

ST . -Al cot(3) A cot(c3) + A2 cot(al) -A2 cot(a 1) 
2 

- A3 Wot(a2) A2 COt (a1) A2 COt (a^)+ A3 cot(x2), 

The following maximum-minimum principle for bA is proven by proceeding as 
in Zlmal [18]. 

LEMMA 4.3. Let (2.1), (2.3) hold and assume that A is of acute type. If 
wA, E XA assumes a maximum (minimum) at the node Pi E Q2, then 

(4.12) 
bA(WA,10) 

?0 (?0) 

holds. 

Proof From (4.4) we derive, setting wi = wA(Pi), 

(4.13) ba (wA, q(i)) = - >3 (Al cot(a3) (wi- W2) + A3 cot(a2) (W1 -W3)). 
TEPi 

Since cot(a3) > 0,cot(a2) > 0, we conclude bA(wa, (k)) ? 0 if w1 is a (local) 
maximum of wA and bA(wA, 0(i)) < 0 if w, is a local minimum of wAD. 
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i , j+l 1'Wi , j+ 
1 

k 

U. U. . U. 

h h 

X2 

1U,3-1 'i~j-1 

FIGURE 4 
A Finite Difference Star 

The maximum-minimum principle implies important properties of the stiffness 
matrix S which is associated with bA (S is an M x M-matrix with entries Sij 

THEOREM 4.2. If /\ is of acute type and if (2.1), (2.3) hold, then S is a 
diagonally dominant Stieltjes matrix. 

Proof. The symmetry of bA implies that S is symmetric and the coercivity 
estimate implies positive definiteness. Let i 0 j. Since the basis function >(i) 
assumes a minimum (namely 0) at Pj, we conclude from the minimum principle 

Sij = bA(p(i), q(j)) < 0. Thus, all off-diagonal entries of S are nonpositive (the 
diagonal entires Sij are, obviously, positive) and, consequently, S is a Stieltjes 
matrix (see Varga [15]). The proof of the diagonal dominance of S is standard (see, 
e.g., Zlamal [18]). 0 

The results of this section assert that the most important qualitative properties 
of the "piecewise linear" Galerkin approximation of the operator - div(a(x) grad u) 
carry over to the bilinear form bA if the mesh is of acute type. 

5. Convergence. The well-known convergence result for Galerkin's method 
(see, e.g., Strang and Fix [13]) asserts that the error of the Galerkin approximation 
of u is minimal in the energy norm. Thus, an interpretation of (3.17) as a pertur- 
bation of Galerkin's approximation cannot produce error estimates in the energy 
norm, which are independent of the variation of u between the nodes. In fact, 
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estimates obtained in this way depend on the H2-norms of u on the triangles of the 
partition (just as the Galerkin approximation error estimate) and on W" ?-norms 
of the coefficient function a on the triangles. 

Therefore, we have to proceed differently in order to obtain an estimate which 
only depends on the variation of the flux density J and of the right-hand side f 
(and on the diameters of the triangles). The basic idea is to estimate the difference 
u- uA of the piecewise linear interpolant uI of the solution u of (1.1), (1.2) and 
the finite element solution uA of (3.17) and to interpret bA directly as perturbation 
of b. We have 

(5.1) b -(u,-uq,OA) = b(uI,qA) + (f,OA)2,0,A VqAEX e ,o 

In particular, we obtain, with OAt = uI - up (E XA,o!), 

(5.2) bA(ui - uA,UI - uA) = bA(u1,u, - uA) + (fuI -UA)2 Q A 

and the estimate (4.6) gives 

(5.3) a - Utl2 1(Q) < IbA(ui, ui - u) + (f, u UA1 - 

The following consistency type lemma provides the basic ingredient for an estimate 
of the right-hand side of (5.3). 

LEMMA 5. 1. Let (2.1) -(2.4) hold and assume that the mesh /\ is of acute type. 
Then 

bA (uj, O) )- b(u, OA) | 

(5.4) < 3(area(Q))" 12max (hT ||L | | H1(Q2) Dx L-(T)/ 

holds for every OA E X<. 

Proof. By employing the three reference element transformations of Figure 1 we 
obtain from (3.9) (a), (b): 

(5.5) JT,i[UI] = J(XGT) + aT,i, i = 1,2,3, 

where 0T,i is given by 

(5.6) UTi = (IT,j)'AT1(a)6Ti, i =1, 2, 3. 

6T,i is of the form (3.8). By inserting (5.5) into (4.1) we obtain 

(5.7) bA(u1, tO) =E | (XG,) gradOA dx + E WT[OA] 
TEA TEA 

with 

WT[k'A] = s1 UT, .grad0) dx + 02 frT,2 grad0(2) dx 
(5.8) T 

+ 0k3 | T,3 grad 0q3) dx. 

We substitute J(X) + (J(XGT) - J(X)) for J(XGT) into the first sum on the right- 
hand side of (5.7) and obtain 

bA (uOA= f J(x) *gradOAedx + S (J(XG,)- J(x)) .gradOA dx 

(5.9) TEA 

+ 5 WT[O]. 
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By (2.12) we have 

(5.10) f J(x) . gradqOA dx = b(u, OA), At E XA. 

The second term on the right-hand side of (5.9) can be estimated by 

E (J(xGT) - J(x)) *gradqOAddx 

(5.11) 
TE 

< (area(Q))'/Imax (hT 11 1 L IH1(Q2). 
TEA aDx L- (T)/ 

A somewhat involved but essentially trivial computation gives 

wT[O5A] = (A1 cot(a3)((xi - x2)El,1 + (Y1 - y2)El 2)(01 - 02) 

(5.12) + A2 cot(alf)((x2 -3)E2,1 + (2 - 3)E2,2)(52 - 03) 

+ A3 cot(a2)((xl -t 3)E3,1 + (Y1 - 93)E3,2)(q91 - 3)) 

where Pi = (ti, 9,)', i = 1, 2, 3 are the vertices of T (see Figure 2) and 

(5.13) Eij= jj dl; i = 1, 2,3, j = 1, 2, 

with Ej,T defined in (3.1), (3.5). We obtain from (4.8) and (5.12): 

W [<kbL ?I <(area(T))1/2 

x (cot(Ce3)A 2((?zl - t2)E1,1 + (1 -Y2)El )2 

(5.14) +cot(cel)A2((?t2 - t3)E2,1 + (Y2 -3)E2,2)2 

+ cot(Ce2)A2((?t, - t3)E3,1 + (1 -y3)E3,2)2)1/2 

x gradq5l onT 

and, consequently, 

(area(T))1/2 

(51) WT[OA]J ? 
m 
raxc (Ai Ei,112 + jE,212) 

X (Cot(x3)l12 + Cot(l)l12 + COt(ca2)12)1/21 grad?Oj on T. 

Since 

(5.16) (cot(cx3)12 + cot(i)l12 + cot(c12)1)'/2 = 2(area(T)) 1/2 

holds, we derive 

(5.17) IWT [OA] I < 2 area(T) . max (Ai IEij 1) I grad OA I on T. 
=1,2,3 

j=1,2 

From (5.13), (3.11) (d), (3.1) and (3.5) we obtain 

(5.18) Ai| Ei?j < SUP EjTI ? hT |i| 

and thus 

(5.19) | WT[OA]] < 2(area(Q)) /2 max (hT |i ) 1k/IH'(Q2). 
I TEA TEA~~~~ Dx L-"'(T)/ 
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The estimate (5.4) follows from (5.8), (5.9), (5.10), (5.11) and (5.19). 5 
Estimates for the error in approximating the L2 (Q)-scalar product (., ')2, by the 

discrete scalar product (., ')2,nA are completely standard. The following lemma is 
a special case of Theorem 2 in Nedoma [10]. 

LEMMA 5.2. Let f E H2(7) and assume that there is ao > 0 such that a > 
ao holds for every interior angle a of every triangle T E /\ ("minimum angle 
condition"). Then the estimate 

(5.20) T(f, bA)2, - (f, qA)2,Q)AI < Ch2 HfHIH2(Q) 1I0L IIH1(0) 

holds for every OA E X<. The constant C depends only on Q and on a0o 

We have 

JbA(ui,uI - uA) + (f,UI-UA)2 - ,A 

(5.21) < IbA (ui, ui - uA) - b(u, u, -uA) 

+ Jb(u,uI - up) - (f,uI- U )2-QAl 

Lemmas 5.1, 5.2, (2.11) (with ObA = uj - up E XA,o) and (5.3) imply the main 
result of this paper. 

THEOREM 5. 1. Assume that (2.1) -(2.4) hold and that the mesh /\ is of acute 
type and satisfies the minimum angle condition (of Lemma 5.2). Then the (uniquely 
defined) finite element approximation uA of u satisfies the error estimate 

(5.22) |UI - UAH1(r) < a (h || IAZI11 + h2 HfHIH2(Q)) 

The constant K depends only on the minimum angle ao, on Q and on A9D. 

The error estimate (5.22) is of order h and independent of the derivatives of the 
exact solution u. It only depends on first derivatives of the flux density J and- 
owing to the error in approximating (., ')2, by (., )2,Q-/ on derivatives of the 
right-hand side f. 

Obviously, only nodal value differences u(Pi) - uA(Pi) enter the left-hand side 
of (5.22). We cannot expect a convergence result of the type (5.22) to hold 
for 11u - UA IH1(Q) since the inverse average finite element method only depends 
on the values of the coefficient function a along element edges. An estimate for 

IIU-UA IIH1 (H ) certainly depends on derivatives of the solution u and of the coeffi- 
cient function a. The strength of the method (3.17) is the good nodal approximation 
property reflected by the estimate (5.22). In the one-dimensional homogeneous case 
(f 0_ ) the flux J(x) = a(x)u'(x) is a constant. Thus the one-dimensional ana- 
logue of the inverse-average-finite element scheme (3.17) gives exact nodal values, 
i.e., uA(Pi) = u(Pi) (this follows immediately by setting aj 0 in (5.22)). The 
behavior of u between nodes may be arbitrarily bad. 

For the (multi-dimensional) semiconductor device equations (see, e.g., Van Roos- 
broeck [14]) there is a lot of computational evidence indicating the fast variation 
of a, u, Vu and the slow variation of J (see Selberherr [12]). Also, these results 
are confirmed by a singular perturbation analysis (see Markowich [7]). It turns out 
that a and Vu exhibit internal and boundary layers of fast variation while the flux 
density J varies significantly more slowly. Rigorous regularity-type estimates of 
this type do not to the authors' knowledge exist in the literature as yet. 
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6. Approximation of the Flux. In many applications an accurate approxima- 
tion of the flux is extremely important (e.g. for the semiconductor device problem, 
see Markowich [7], where J = a grad u represents a current density). Since our 
finite element method is based on approximating J by constant vectors on each 
finite element, the corresponding convergence results are rather easily obtained. 

First we remark that the discrete flux density is not uniquely defined. On every 
finite element T each of the three quantities JT,i := JT,i [us], i = 1, 2,3 defined in 
(3.10) can be regarded as an approximation to J. We prove 

LEMMA 6.1. Let the assumptions of Theorem 5.1 hold. Then, given an arbi- 
trary numbering of the vertices in each triangle T, the estimate 

/ ~~~~~1/2 / 
(6.1) E dx < const- ah |+ h2IfIIh 2 

holds for i = 1, 2,3. 

Proof. We estimate 

IJ(X) - JT,i| < IJ(X) - J(XGT)I + IJTi[UI] - J(XGT)I 

+ IJT,i[uII - JT,i[UAII. 

Obviously, 

IJ(X) -J( )| < h || | aJ| T 

and, by (5.5), (5.6), (3.8), 

IJTi[UI] - J(XGT)I = IUT,iI < const hT |i ax L-"(T) 

Also, (3.10) gives 

I JT,i [UI] - JT,i [ui] = I(ITi<) AT i (a)IITri grad(ui - uA)I 

The "minimum angle condition" implies I(ITi)j-1 JIT I < const and (4.9) gives 

I JT,i [uI] - JT,i [uA] I = const a I grad(ui - uA)I. 

The estimate (6.1) follows from (5.22). 15 
The discrete flux density JA defined by 

(6.2) J(x) = JT,i, xET, i=1,2or3, 

converges to J of order 1 in the L2-norm: 

(6.3) IIJ- JAMIL2(r) =0 (h || L AZ | || +h 2If IIH2(Q)) 

The error bound only depends on the variation of J and on the variation of the 
right-hand side f. 

In semiconductor device simulation the computation of outflow currents is often 
the final goal. Usually, the Dirichlet boundary aQ9D is the union of finitely many 
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(closed and disconnected) contact segments. Let C E dFZD be one of these contacts. 
Then 

(6.4) JC :=Jt i dl 

is the outflow current at C. We choose a function Xc E H' (n) n C(Q) which 
satisfies 

(6.5) O5C x)={', xEC, 
(. X E al2D-C 

Multiplying (2.1) by qOc and integrating by parts gives 

(f, qC)2,0 = -b(u, qc) + j ca grad u M dl. 

We derive from (2.2), (6.4), (6.5) 

(6.6) Jc = b(u, Xc) + (fi C)2,0 

An approximation of the outflow current is obtained by substituting the bilinear 
form b by its finite element discretization bA, u by the finite element solution uA, qOc 
by its piecewise linear interpolant (qOc)I, and (., *)2,i by (., .)2,0,A: 

(6.7) JC,A := bA (uA, (OA )I) + (f , (qC)I)2,0,A A 

JC,A is computed via post-processing by an additional evaluation of the bilinear 
form bA and of the discrete scalar product (-,)2,Q,A- 

The proof for the convergence of Jc,A to JC as h -k 0 is similar to the proof of 
Lemma 6.1. We obtain 

(6.8) IJc - >cA = ? (h ||| J | + h 211f IH2 () 

We remark that the approximation of the projection of the flux density onto the 
sides of the triangles is uniquely defined, although the discrete flux density is not. 
Let ei be an arbitrary side of length 1i connecting the vertices Pi, and Pi2, and let 
oi be the unit vector parallel to ei pointing from Pi, to Pi2. Then the "intrinsic" 
approximation of J vri k, is 

(6.9) J .ilei eAi UA(Pi2)-UA(Pi ) 

where Ai is given by (3.11) (d). The right-hand side of (6.9) is equal to JT,i1 [UA] vi 
and JT,i2 [uA] vi for both triangles T which have the edge ei. 

In stress analysis it is common to approximate the stress at an interior node 
Pi by the arithmetic mean of approximate stresses (obtained from the piecewise 
linear finite element solution) over all triangles which contain Pi (see Zienkiewicz 
[16, p. 104]). In fact, superconvergence of this approximation holds for Galerkin's 
method on uniform meshes. Therefore, we suggest to approximate the current 
density J(Pi), Pi e Q, by the arithmetic mean JA(Pi) of the approximate current 
densities JT,i[uA] over all triangles T with Pi e T: 

(6 10) J( pi) JA( pi) J E J[ A] 
( TEPi 

(Ni denotes the number of all triangles T which contain Pi). 
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7. An Application. A typical example for the application of inverse-average- 
type finite element schemes is provided by the electron and hole continuity equa- 
tions of the Van Roosbroeck semiconductor device model (see Van Roosbroeck [14], 
Selberherr [12], Markowich [7]). In a simplified setup we obtain for the electron 
continuity equation 

(7.1) a = e+, 

where ? denotes the electrostatic potential and n = elou the electron concentration. 
J = eI'PVu is the electron current density. Typically, the potential X, which satisfies 
a singularly perturbed Poisson's equation, exhibits thin space charge layers, within 
which it varies rapidly. Outside these layers, / varies moderately. The electron 
current density J exhibits layer behavior in some cases, too; however, its variation 
is usually much weaker than that of b. 

Usually, approximations 4i of the nodal values Ob(Pi) of b are obtained as solu- 
tions of a finite element or finite difference discretization of Poisson's equation. We 
set up the piecewise linear interpolant OA of Pi satisfying 

(7.2) Oi(Pi) : t 

and define 

(7.3) aA(x) := e 

Let T be the triangle of Figure 2. Then the inverse averages of aA along the edges 
are given by 

(7.4) Ai (?/a-l dl) =(?/eiP ^dl 

A simple calculation gives 

(7.5) Al = e01B(Oj -42), A2 = e 2B(?02 - ?$3), A3 = e+3 B(03 01)- 

where B(z) is the Bernoulli function defined by 

(7.6) B(z)= Z 
ez-1 

If the triangular mesh A is generated by a rectangular grid with mesh sizes h in 
the x1-direction and k in the x2-direction, then the finite element discretization 
reduces to the finite difference scheme 

h (e2Pt?+'B(oi+?j-,O ui+ j-u i, 

-e1l0Z .B(Oi j - fib 1j) ui,j - i-1l,j) (7-7) h~~~~ 4'ij) ' 

+ k (e +1B(oij+l - ij)u+l 

-el3B ( -ij - /ii)Uz - U) 
u 

1) ufij 

(see Figure 4 for notation). The scheme (7.7) is widely employed in semiconductor 
device simulation (see, e.g., Selberherr [12], Markowich [7D. Originally, its one- 
dimensional analogue was obtained by Scharfetter and Gummel [11], who developed 
the idea of approximating the current density by a constant on each mesh interval. 
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The finite element schemes presented in this paper represent a straightforward 
generalization of Scharfetter-Gummel type difference schemes. The "nice" prop- 
erties of the coefficient matrix carry over to the stiffness matrix if the mesh is of 
acute type (see Theorem 4.2), and the convergence performance only depends on 
the resolution of the current density and of the inhomogeneity by the mesh. 
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